Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture.

نویسندگان

  • Shinsuke Tada
  • Takumi Era
  • Chikara Furusawa
  • Hidetoshi Sakurai
  • Satomi Nishikawa
  • Masaki Kinoshita
  • Kazuki Nakao
  • Tsutomu Chiba
  • Shin-Ichi Nishikawa
چکیده

Bipotent mesendoderm that can give rise to both endoderm and mesoderm is an established entity from C. elegans to zebrafish. Although previous studies in mouse embryo indicated the presence of bi-potent mesendoderm cells in the organizer region, characterization of mesendoderm and its differentiation processes are still unclear. As bi-potent mesendoderm is implicated as the major precursor of definitive endoderm, its identification is also essential for exploring the differentiation of definitive endoderm. In this study, we have established embryonic stem (ES) cell lines that carry GFP gene in the goosecoid (Gsc) gene locus and have investigated the differentiation course of mesendodermal cells using Gsc expression as a marker. Our results show that mesendoderm is represented as a Gsc-GFP+ E-cadherin(ECD)+ PDGFRalpha(alphaR)+ population and is selectively induced from ES cells under defined conditions containing either activin or nodal. Subsequently, it diverges to Gsc+ ECD+ alphaR- and Gsc+ ECD- alphaR+ intermediates that eventually differentiate into definitive endoderm and mesodermal lineages, respectively. The presence of mesendodermal cells in nascent Gsc+ ECD+ alphaR+ population was also confirmed by single cell analysis. Finally, we show that the defined culture condition and surface markers developed in this study are applicable for obtaining pure mesendodermal cells and their immediate progenies from genetically unmanipulated ES cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pancreatic Differentiation of Sox 17 Knock-in Mouse Embryonic Stem Cells in Vitro

The way to overcome current limitations in the generation of glucose-responsive insulin-producing cells is selective enrichment of the number of definitive endoderm (DE) progenitor cells. Sox17 is the marker of mesendoderm and definitive endoderm. The aim of the present research was to study the potential of Sox17 knock-in CGR8 mouse embryonic stem (ES) cells to differentiate into insulin produ...

متن کامل

Expression of Endoderm and Hepatic Specific Genes after in vitro Differentiation of Human Embryonic Stem Cells

Background: Human embryonic stem cells (hESC), which are derived from the inner cell mass of the blastocysts, have been considered to be pluripotent cells. In this study we examine the differentiating potential of hESC into hepatocytes by characterization of the expression of endoderm and liver-specific genes. Methods: hESC were cultivated in suspension to form aggregates, the embryoid bodies. ...

متن کامل

Meteorin Regulates Mesendoderm Development by Enhancing Nodal Expression

During gastrulation, distinct lineage specification into three germ layers, the mesoderm, endoderm and ectoderm, occurs through an elaborate harmony between signaling molecules along the embryonic proximo-distal and anterior-posterior axes, and Nodal signaling plays a key role in the early embryonic development governing embryonic axis formation, mesoderm and endoderm specification, and left-ri...

متن کامل

Anterior definitive endoderm from ESCs reveals a role for FGF signaling.

The use of embryonic stem cell (ESC) differentiation to generate functional hepatic or pancreatic progenitors and as a tool for developmental biology is limited by an inability to isolate in vitro equivalents of regionally specified anterior definitive endoderm (ADE). To address this, we devised a strategy using a fluorescent reporter gene under the transcriptional control of the anterior endod...

متن کامل

FGF inhibition directs BMP4-mediated differentiation of human embryonic stem cells to syncytiotrophoblast.

Bone morphogenetic protein (BMP) signaling is known to support differentiation of human embryonic stem cells (hESCs) into mesoderm and extraembryonic lineages, whereas other signaling pathways can largely influence this lineage specification. Here, we set out to reinvestigate the influence of ACTIVIN/NODAL and fibroblast growth factor (FGF) pathways on the lineage choices made by hESCs during B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 132 19  شماره 

صفحات  -

تاریخ انتشار 2005